On the number of minima of a random polynomial
نویسندگان
چکیده
We give an upper bound in O(d) for the number of critical points of a normal random polynomial. The number of minima (resp. maxima) is in O(d)Pn, where Pn is the (unknown) measure of the set of symmetric positive matrices in the Gaussian Orthogonal Ensemble GOE(n). Finally, we give a closed form expression for the number of maxima (resp. minima) of a random univariate polynomial, in terms of hypergeometric functions.
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کامل2 6 A pr 2 00 7 On the number of minima of a random polynomial ∗
We give an upper bound in O(d) for the number of critical points of a normal random polynomial with degree at most d and n variables. Using the large deviation principle for the spectral value of large random matrices we obtain the bound O “ exp(−βn + n 2 log(d− 1)) ” (β is a positive constant independent on n and d) for the number of minima of such a polynomial. This proves that most normal ra...
متن کاملar X iv : m at h / 07 02 36 0 v 1 [ m at h . N A ] 1 3 Fe b 20 07 On the number of minima of a random polynomial ∗
We give an upper bound in O(d) for the number of critical points of a normal random polynomial. The number of minima (resp. maxima) is in O(d)Pn, where Pn is the (unknown) measure of the set of symmetric positive matrices in the Gaussian Orthogonal Ensemble GOE(n). Finally, we give a closed form expression for the number of maxima (resp. minima) of a random univariate polynomial, in terms of hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 24 شماره
صفحات -
تاریخ انتشار 2008