On the number of minima of a random polynomial

نویسندگان

  • Jean-Pierre Dedieu
  • Gregorio Malajovich
چکیده

We give an upper bound in O(d) for the number of critical points of a normal random polynomial. The number of minima (resp. maxima) is in O(d)Pn, where Pn is the (unknown) measure of the set of symmetric positive matrices in the Gaussian Orthogonal Ensemble GOE(n). Finally, we give a closed form expression for the number of maxima (resp. minima) of a random univariate polynomial, in terms of hypergeometric functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classifications of Random Polynomials

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

متن کامل

2 6 A pr 2 00 7 On the number of minima of a random polynomial ∗

We give an upper bound in O(d) for the number of critical points of a normal random polynomial with degree at most d and n variables. Using the large deviation principle for the spectral value of large random matrices we obtain the bound O “ exp(−βn + n 2 log(d− 1)) ” (β is a positive constant independent on n and d) for the number of minima of such a polynomial. This proves that most normal ra...

متن کامل

ar X iv : m at h / 07 02 36 0 v 1 [ m at h . N A ] 1 3 Fe b 20 07 On the number of minima of a random polynomial ∗

We give an upper bound in O(d) for the number of critical points of a normal random polynomial. The number of minima (resp. maxima) is in O(d)Pn, where Pn is the (unknown) measure of the set of symmetric positive matrices in the Gaussian Orthogonal Ensemble GOE(n). Finally, we give a closed form expression for the number of maxima (resp. minima) of a random univariate polynomial, in terms of hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008